Active Sentiment Domain Adaptation
Introduction本文提出的一个active sentiment domain adaptation方法来解决negative transfer的问题。利用的是general sentiment information和少量的从target domain中的actively selected labeled samples。general sentiment information是从sen
Introduction本文提出的一个active sentiment domain adaptation方法来解决negative transfer的问题。利用的是general sentiment information和少量的从target domain中的actively selected labeled samples。general sentiment information是从sen
clustering words for intensity ordering首先需要从Google N-gram中抽取形容词的程度顺序信息。使用的方法是基于模版匹配的方法。比如从good but not great我们可以总结出一个规则xx but not xx,然后可以发现后者比前者的程度深。然后使用mixed integer linear programming (MILP)来进行最优化排序
Abstract本文主要目的是为了产生linguistically coherent representations,其中使用了sentiment lexicons, negation words, 和intensity words。 Introduction让计算机能够理解情感一直是AI的核心任务,有许多方法来实现,比如lexicon-based classification以及早期的machi
Introduction这篇论文主要是要解决英文短语的词向量表示问题,英语的词向量可以分成两种,一种是compositional,另一种是non-compositional。前者的短语语义就是组成单词的叠加,而后者则会产生完全不同的意思。本文引入了一个score function来度量一个短语的compositional的程度。 完全依赖non-compositional embedding会产生
Abstract无监督学习的词向量的评价通常与下游应用没有很大的关联,本文将提出QVEC的评价方法。 Introduction缺乏标准化的对比方式是因为词向量的每个维度依然是无法解释的,如何去给一个无法解释的表示打分依然是不明确的。 本文通过将distribution word vector和人工标注的word vector对其,然后计算每一维的相关度,相加之后就得到了distribution w
Abstract本文主要是想检测老年痴呆症,因为语义的缺失是一大症状。获得了96.8%的召回率。通过训练随机森林的分类器获得了0.74的F值(二元分类)。并且仅用了12个特征。 IntroductionAD在病情发展的过程中会出现语言的转变,并且这是可以检测得到的。这些变化包括句法复杂度的下降、找词困难和语义内容缺失,信息密度低(有语义的词在所有词中的比例),效率低。 结合上lexicosynta